

Design & Classification of Trials

July 29, 2002

Sheryl F. Kelsey, Ph.D

Department of Epidemiology

Graduate School of Public Health

University of Pittsburgh

Written Protocol Specifies Design

Clinical hypothesis: Patient selection

Intervention and Control

Outcome/Endpoint (Timeframe)

Statistical issues: Design

Masking

Randomization

Sample size

Interim monitoring

Analysis strategy

Procedural: Data Collection/Forms

Data Management

Quality Control

Organization and Administration

Design & Classification of Trials

- No perfect design
- No design fits all needs and circumstances
- First select research objective, then choose design

Parallel Design

Group I on Treatment A

Group II on Treatment B

Group III on Treatment C

Parallel Design

```
Inefficiency in:
      Size
      Time
      Cost
      Number of Questions
Advantages
  Simple
   Few Assumptions
   Valid Comparisons
   Can be used in all situations
```

Positive Control

Group I on Standard TX

Group II on New TX

Positive Control

Advantages

Assess whether new treatment as good as or better than standard Avoid Placebo/ethical issue

Disadvantages

Power issue

Possible lack of benefit of standard treatment

Crossover Design

Group I on TX A, Then TX B

Group II on TX B, Then TX A

Crossover Design

Advantages

Sample size:

Use same subject twice - reduce variability
Appealing to use a patient as his/her own control
Good for eyes, dermatology

Disadvantages

Assumption of no carryover effect (Particularly tricky/behavorial intervention)
Stability of disease process
Limits response variable

Can't use "Cure" or Clinical Event

Factorial Design

	Treatment A	Control
Treatment B	a	b
Control	C	d

Treatment A & B
Treatment A only
Treatment B only
Neither

Factorial Design

Advantages

Answer two (or more) questions at the same time Get information on interaction Get information whether two treatments are better than one

Disadvantages

Generally low power to detect interaction
Between cell comparisons have fewer numbers
Complexity
Impact on recruitment
Impact on compliance
Can you change 2 behaviors simultaneously?

Nevertheless, this is an underused design!

Physician Health Study (PHS)

- Factorial trial: Aspirin for heart disease and Betacarotene for cancer incidence (except non-melanoma skin cancer)
- 22,000 U.S. physicians
- Average of 12 years of follow-up
- Aspirin efficacious for cardiovascular endpoint - stopped early

Physician's Health Study (PHS)

	Beta Carotene	Placebo	RR	C!
N	11,036	11,035		
Malignant Neoplasm	1,273	1,293	.98	(.91, 1.06)
Cancer Deaths	386	380	1.0 2	(.89, 1.18)

Group Allocation Designs

- Treatment is applied to entire community instead of individual patient.
- Assign at random hospitals, clinics, factories, cities, or classrooms.

Examples:

public access defibrillators media comparisons to get people to act quickly if experience heart attack symptoms community smoking cessation, weight control, exercise.

Group Allocation Designs

Advantages

Avoid contamination

Allow use of mass interventions

Disadvantages

Effective sample size less than number of individuals

Statistically outcomes from two people from a community are correlated (intra class correlation)

Likely to result in very large number of individuals

Different statistical analyses methods required

Explanatory versus Management (Efficacy vs. Effectiveness)

Can drug A reduce tumor size?

Does prescribing drug A to patients with tumors do more good than harm?

Efficacy versus Effectiveness

- Efficacy clinical trials show that a treatment can work
- Evidence suggests that interventions are often less effective in clinical settings than in the laboratory (Weisz et al, 1992)
- Effectiveness trials evaluate treatments in the settings where they will be applied.

NHLBI, NCI Research Phases

hypothesis generation

(phase I)

method development

- (phase II)
- controlled intervention trials
- (phase III)
- studies in defined populations (phase IV)
- demonstration research

(phase V)

Drug Trials

Phase I Healthy Volunteers

Phase II Safety & Efficacy

*Phase III Comparative

Phase IV Post-Market Surveillance

Mega Trials = Large Simple Trials

Advantages

- Quick answers
- Important public health issues
- Entire community involvement
- Moderate effects

Disadvantages

- "Hard" endpoints only
- Few secondary questions
- No quality control
- Only common diseases

Masking (blinding)

Single Double

Not possible w/behavior trials Masked evaluation key to minimize bias Deception not ethical